本文共 9270 字,大约阅读时间需要 30 分钟。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 初始容量默认为16static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量为2^30static final float DEFAULT_LOAD_FACTOR = 0.75f; // 负载因子默认为0.75static final int TREEIFY_THRESHOLD = 8; // 树化阈值:链表长度达到8时会树化static final int MIN_TREEIFY_CAPACITY = 64; // 树化条件:表长度达到64且链表长度达到8static final int UNTREEIFY_THRESHOLD = 6; // 树降级为链表的阈值:链表长度达到6时会降级
static class Nodeimplements Map.Entry { final int hash; final K key; final V value; Node next; Node(int hash, K key, V value, Node next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry e = (Map.Entry ) o; return Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue()); } return false; }}
transient Node[] table;transient Set > entrySet;transient int size;transient int modCount;int threshold;final float loadFactor;
public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity);} public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR);} public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR;} public HashMap(Mapm) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false);}
public V put(K key, V value) { return putVal(hash(key), key, value, false, true);} final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node tab[] = table; Node p = null; int n = tab.length; if ((tab = table) == null || n == 0) { table = resize(); n = table.length; } int i = (n - 1) & hash; if ((p = tab[i]) == null) { tab[i] = new Node<>(hash, key, value, null); } else { if (p.hash == hash && (key == p.key || (key != null && key.equals(p.key)))) { e = p; } else if (p instanceof TreeNode) { e = ((TreeNode ) p).putTreeVal(this, tab, hash, key, value); } else { for (int binCount = 0; ; binCount++) { if ((e = p.next) == null) { p.next = new Node<>(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) { treeifyBin(tab, hash); } break; } if (e.hash == hash && (key == e.key || (key != null && key.equals(e.key)))) { break; } p = e; } } } if (e != null) { V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) { e.value = value; } afterNodeAccess(e); return oldValue; } size++; if (size > threshold) resize(); afterNodeInsertion(evict); return null;} final Node[] resize() { if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } newCap = oldCap << 1; if (newCap > MAXIMUM_CAPACITY) newCap = MAXIMUM_CAPACITY; newThr = (oldThr << 1) > 0 ? oldThr << 1 : 0; threshold = newThr; } else if (oldThr > 0) { newCap = oldThr; newThr = (oldThr << 1) > 0 ? oldThr << 1 : 0; } else { newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * newCap); if (newThr > 0 && newThr < MAXIMUM_CAPACITY) newThr >>= 1; } if (newThr == 0) { newThr = (newCap < MAXIMUM_CAPACITY && (float) newCap * loadFactor < MAXIMUM_CAPACITY) ? (int)(newCap * loadFactor) : Integer.MAX_VALUE; } threshold = newThr; Node [] newTab = (Node []) new Node[newCap]; if (oldTab != null) { for (int j = 0; j < oldCap; j++) { if ((e = oldTab[j]) != null) { if (e.next == null) { newTab[e.hash & (newCap - 1)] = e; } else if (e instanceof TreeNode) { ((TreeNode )e).split(this, newTab, j, oldCap); } else { loHead = null; loTail = null; hiHead = null; hiTail = null; do { next = e.next; if ((e.hash & oldCap) == 0) { loTail = loHead == null ? e : new Link(e); if (loHead == null) loHead = e; } else { hiTail = hiHead == null ? e : new Link(e); if (hiHead == null) hiHead = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } table = newTab; return newTab;}
public V get(Object key) { return (e = getNode(hash(key), key)) == null ? null : e.value;} final NodegetNode(int hash, Object key) { if (tab != null && n > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && ((key == first.key) || (key != null && key.equals(first.key)))) { return first; } if ((e = first.next) != null) { if (first instanceof TreeNode) { return ((TreeNode ) first).getTreeNode(hash, key); } else { do { if (e.hash == hash && ((key == e.key) || (key != null && key.equals(e.key)))) { return e; } } while ((e = e.next) != null); } } } return null;}
public V remove(Object key) { return removeNode(hash(key), key, null, false, true);} final NoderemoveNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { if (tab != null && n > 0 && (p = tab[index]) != null) { if (p.hash == hash && ((key == p.key) || (key != null && key.equals(p.key)))) { node = p; } else if ((e = p.next) != null) { if (p instanceof TreeNode) { node = ((TreeNode ) p).getTreeNode(hash, key); } else { do { if (e.hash == hash && ((key == e.key) || (key != null && key.equals(e.key)))) { node = e; break; } } while ((e = e.next) != null); } } if (node != null && (!matchValue || (value == node.value) || (value != null && value.equals(node.value)))) { if (node instanceof TreeNode) { ((TreeNode ) node).removeTreeNode(this, tab, movable); } else if (node == p) { tab[index] = node.next; } else { p.next = node.next; } modCount++; size--; afterNodeRemoval(node); return node; } } return null;}
public boolean replace(K key, V oldValue, V newValue) { if ((e = getNode(hash(key), key)) != null && ((e.value == oldValue) || (e.value != null && e.value.equals(oldValue)))) { e.value = newValue; afterNodeAccess(e); return true; } return false;} public V replace(K key, V value) { if ((e = getNode(hash(key), key)) != null) { V oldValue = e.value; e.value = value; afterNodeAccess(e); return oldValue; } return null;} 通过对上述方法的分析,可以看出HashMap的实现细节,包括哈希计算、路由寻址、链表和树化处理、扩容机制等。这些机制共同确保了HashMap在高负载环境下的高效性能。
转载地址:http://akhfk.baihongyu.com/